Physiological responses to self-induced burrowing and metabolic rate depression in the ocean quahog Arctica islandica.
نویسندگان
چکیده
Arctica islandica is the longest-lived non-colonial animal found so far, and reaches individual ages of 150 years in the German Bight (GB) and more than 350 years around Iceland (IC). Frequent burrowing and physiological adjustments to low tissue oxygenation in the burrowed state are proposed to lower mitochondrial reactive oxygen species (ROS) formation. We investigated burrowing patterns and shell water partial pressure of oxygen (P(O(2))) in experiments with live A. islandica. Furthermore, succinate accumulation and antioxidant defences were recorded in tissues of bivalves in the normoxic or metabolically downregulated state, as well as ROS formation in isolated gills exposed to normoxia, hypoxia and hypoxia/reoxygenation. IC bivalves burrowed more frequently and deeper in winter than in summer under in situ conditions, and both IC and GB bivalves remained burrowed for between 1 and 6 days in laboratory experiments. Shell water P(O(2)) was <5 kPa when bivalves were maintained in fully oxygenated seawater, and ventilation increased before animals entered the state of metabolic depression. Succinate did not accumulate upon spontaneous shell closure, although shell water P(O(2)) was 0 kPa for over 24 h. A ROS burst was absent in isolated gills during hypoxia/reoxygenation, and antioxidant enzyme activities were not enhanced in metabolically depressed clams compared with normally respiring clams. Postponing the onset of anaerobiosis in the burrowed state and under hypoxic exposure presumably limits the need for elevated recovery respiration upon surfacing and oxidative stress during reoxygenation.
منابع مشابه
A Metabolic Model for the Ocean Quahog Arctica Islandica—effects of Animal Mass and Age, Temperature, Salinity, and Geography on Respiration Rate
Owing to its extraordinary lifespan and wide geographical distribution along the continental margins of the North Atlantic Ocean, the ocean quahogArctica islandicamay become an important indicator species in environmental change research. To test for applicability and ‘‘calibrate’’ the Arctica-indicator, metabolic properties of A. islandica specimens were compared across different climatic and ...
متن کاملPhysiological aging in the Icelandic population of the ocean quahog Arctica islandica
The ocean quahog Arctica islandica is one of the longest-living and slowest growing marine bivalves. The oldest specimens obtained for the present study approached 200 yr. To achieve such a long lifespan, accumulation of oxidative damage markers in tissues must ideally be maintained at low levels over time, because the accumulating debris disturbs cellular functions. We investigated shell growt...
متن کاملImperceptible senescence: ageing in the ocean quahog Arctica islandica.
The ocean quahog Arctica islandica is the longest-lived of all bivalve and molluscan species on earth. Animals close to 400 years are common and reported maximum live span around Iceland is close to 400 years. High and stable antioxidant capacities are a possible strategy to slow senescence and extend lifespan and this study has investigated several antioxidant parameters and a mitochondrial ma...
متن کاملResistance to genotoxic stresses in Arctica islandica, the longest living noncolonial animal: is extreme longevity associated with a multistress resistance phenotype?
Bivalve molluscs are newly discovered models of successful aging. Here, we test the hypothesis that extremely long-lived bivalves are not uniquely resistant to oxidative stressors (eg, tert-butyl hydroperoxide, as demonstrated in previous studies) but exhibit a multistress resistance phenotype. We contrasted resistance (in terms of organismal mortality) to genotoxic stresses (including topoisom...
متن کاملAge-dependent patterns of antioxidants in Arctica islandica from six regionally separate populations with different lifespans
Environmental factors such as temperature and salinity regimes shape lifespan in marine ectotherms. We investigated whether the effect occurs through modification of metabolic reactive oxygen species (ROS)-producing processes and is thus in line with the rate of living–free radical theory of aging. We compared 6 biogeographically and climatically distinct populations of the extremely long-lived...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 214 Pt 24 شماره
صفحات -
تاریخ انتشار 2011